FUGITIVE DUST CONTROL PLAN

Nebraska Public Power District – Sheldon Station

Submitted To: Nebraska Public Power District
Sheldon Station
4500 West Pella Road
Hallam, Nebraska 68368

Submitted By: Golder Associates Inc.
44 Union Boulevard, Suite 300
Lakewood, Colorado 80228

October 15, 2015
Project No. 1534568
Table of Contents

1.0 INTRODUCTION .. 1
1.1 Facility Description ... 1
1.2 Regulatory Requirements .. 1
1.3 CCR Fugitive Dust Sources ... 2
2.0 FUGITIVE DUST CONTROL MEASURES .. 3
 2.1 Collection and Loading ... 3
 2.2 Transport .. 3
 2.3 Placement .. 4
 2.4 Control Measure Explanations ... 4
3.0 EFFECTIVENESS EVALUATION .. 6
4.0 CITIZEN COMPLAINTS LOG .. 7
5.0 REPORTING ... 8
 5.1 Fugitive Dust Control Plan ... 8
 5.2 Annual Report .. 8
6.0 CERTIFICATION .. 9
7.0 REFERENCES .. 10

List of Figures

- Figure 1 Fugitive Dust Locations and Haul Route
1.0 INTRODUCTION

This Fugitive Dust Control Plan (Plan) has been prepared for Nebraska Public Power District’s (NPPD’s) Sheldon Station (SS). This Plan has been developed in accordance with recognized and generally accepted best management practices and the Coal Combustion Residuals (CCR) Rule, Criteria for Classification of Solid Waste Disposal Facilities and Practices, Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments, recently published in the Code of Federal Regulations Title 40 Part 257 (40 CFR 257) on April 17, 2015. This Plan addresses measures to “effectively minimize CCR from becoming airborne at the facility, including CCR fugitive dust originating from CCR units, roads, and other CCR management and material handling activities” (40 CFR 257.80).

This Plan includes identification of the CCR-related fugitive dust control sources at SS, measures to control the fugitive dust, reasons for selecting the dust control measures, procedures to evaluate the effectiveness of the Plan, and requirements for documenting citizen complaints, annual reporting and certification by a professional engineer registered in Nebraska. This Plan may be amended at any time; however, the most current Plan will be maintained in the facility operating record.

1.1 Facility Description

SS is a coal-fired electric facility located in Hallam, Nebraska. The facility can generate up to 225 megawatts of electricity.

1.2 Regulatory Requirements

At SS, fugitive dust is regulated by the Nebraska Department of Environmental Quality (NDEQ) and the Lincoln Lancaster County Air Pollution Control Program Regulations and Standards in accordance with the Air Pollution Control Title V Permit to Operate and Title 129 of the Nebraska Air Quality Regulations (NDEQ 2015). Additionally, fugitive dust at SS will also be managed in accordance with the CCR Rule, 40 CFR 257. Only the requirements of the CCR Rule are covered in this Plan, and the plan does not address requirement specific to the Title V Permit. The requirements of the CCR Rule are:

- Identify and describe the CCR fugitive dust control measures, including why these measures were selected.
- Moisture condition CCRs prior to placement.
- Provide procedures to document citizen complaints.
- Describe procedures to evaluate the effectiveness of the Plan.
- Prepare the initial Plan by October 19, 2015.
- Obtain certification from a professional engineer.
- Prepare an annual report.
- Maintain the most recent Plan and annual reports in the Operating Record.
1.3 CCR Fugitive Dust Sources

The following definitions apply to fugitive dust:

Emissions which could not reasonably pass through a stack, chimney, vent, or other functionally equivalent opening (40 CFR 52.21(b)20 and NDEQ Title 129).

"Fugitive dust" means solid airborne particulate matter emitted from any source other than a flue or stack (NDEQ 2015 and L-LCHD 2010).

At SS, potential primary sources of fugitive dust on the plant site include CCR loading, transport and placement. The CCR-fugitive dust control measures selected for controlling CCR-fugitive dust at SS are applicable and appropriate for the site conditions and will effectively minimize CCR from becoming airborne. As specified by the EPA, performance standards will be used rather than quantitative standards (40 CFR 257 page 21387). The control measures selected for SS are presented in Section 2.0.
2.0 FUGITIVE DUST CONTROL MEASURES

The CCR-fugitive dust sources at SS include CCR loading, transport and placement operations. The specific location of each of these potential CCR fugitive dust sources are as follows:

- Collection and Loading
 - Baghouse to Fly Ash Silos
 - Fly Ash Silos to Trucks
 - Bottom Ash Hopper to Bottom Ash Dewatering Bins
 - Bottom Ash Dewatering Bins to Trucks
- Transport
 - Haul Trucks
 - Haul Roads
- Placement and Storage
 - Ash Landfill #4

2.1 Collection and Loading

Fly ash is collected in flue gas Baghouses and pneumatically conveyed to the Fly Ash Storage Silos. At the Baghouses, dust is controlled within a full enclosure using fabric dust collector filter bags.

Bottom ash is collected in hoppers beneath the boiler and sluiced to the Bottom Ash Dewatering Bins. The bottom ash is stored in the Dewatering Bins until it is transferred to the beneficial re-use facility in haul trucks or hauled to Ash Landfill #4.

For CCR collection and loading, fugitive dust emissions are controlled by:

- Conditioning the fly ash with water or chemical suppressant to an appropriate moisture content prior to loading into haul trucks. The moisture content should help prevent wind dispersal, but not result in free liquids.
- Using a filtered vent for air displaced from the Fly Ash Silo.
- Minimizing the fall distance at the drop point with an enclosed chute.
- Reducing or halting operations during high winds.

2.2 Transport

CCRs are transported in haul trucks on paved roads. The haul routes are shown on Figure 1. Haul roads may be watered if needed. Fugitive dust is controlled by:

- Sweeping and watering roads, as needed.
- Reducing speed limits on haul roads.
- Reducing or halting haul operations during high winds.
2.3 Placement

Placement of CCRs occurs at Ash Landfill #4. Fugitive dust at the Landfill is controlled by:

- Placing fly ash conditioned with water to achieve minimization of dust without the creation of free liquids.
- Compacting the fly ash after placement. Compaction may be achieved by making a pass over spread materials with a haul truck. The fly ash forms a crust that helps to prevent re-entrainment of fly ash from the wind.
- Operating a water truck over recently placed CCRs, except during freezing conditions. During freezing conditions non-erodible materials such as bottom ash may be used to control dust.
- Reducing or halting operations during high winds.

2.4 Control Measure Explanations

The measures identified above for controlling CCR fugitive dust at SS are applicable and appropriate for the site conditions. The reason for selecting each control measure is explained subsequently.

Conditioning – Conditioned CCR means adding moisture to the CCR with water or other liquid to a moisture content that will prevent wind dispersal, but will not result in free liquids (40 CFR 257.80(b)(2)). Liquids bind to the fly ash creating pozzolonic (i.e. cementing) properties in the fly ash, thus minimizing the fly ash from becoming airborne.

Fall distance minimization – Minimizing the fall distance at the drop point will contain the flow of material into a confined area reducing the radius of debris and dust.

Telescopic Spout – The telescoping spout will minimize the exposed fall distance and confine the fly ash.

Road Applications – Sweeping paved roads will minimize dust.

Dust Suppressant – Dust suppressants bind with the CCRs to prevent wind dispersal.

Reducing Speed Limits – Lower speed limits for transporting CCRs would minimize wind dispersal during transport.

High Winds – Reducing or halting operations during periods of high wind would reduce the potential for CCRs to become airborne. High winds are defined as sustained winds over 25 miles per hour (mph) or wind gusts up to 35 mph.
Compacting CCRs After Placement - Compaction of moisture conditioned CCRs helps establish a crust at the ground surface, which can be effective for limiting the generation of fugitive dust.

Applying Water to CCRs After Placement – Applying water to compacted CCRs helps establish a crust at the ground surface, which can be effective for limiting the generation of fugitive dust.
3.0 EFFECTIVENESS EVALUATION

The effectiveness evaluation will be performed by NPPD operations staff. Personnel will make visual observations to assure that fugitive dust at the site is controlled. Personnel involved in CCR handling and operation of the placement facilities at SS will be instructed on specific procedures to ensure compliance with the permits, facility plans and appropriate regulations.

The effectiveness of the fugitive dust control measures will be evaluated according to the following procedures and timeframes.

- Weather conditions will be monitored daily for wind and precipitation events. If high winds are expected, additional measures will be taken to minimize CCRs from becoming airborne. Operation of a water truck will be determined based on expected precipitation or freezing events.

- Routine observations will be conducted to determine whether dust is becoming airborne in such quantities and concentrations that it remains visible in the ambient air beyond the premises where it originates. Corrective action will be taken if visible emissions approach the property boundary.

- Conditioned CCR will be assessed periodically to ensure that it is being placed in such a manner as to prevent the formation of fugitive dust.

- The fabric dust collectors are monitored continuously per the Title V permit to determine whether fabric dust collectors are functioning properly.

The observations and routine functions listed above are standard practice at SS. Visual emissions are observed daily during operations to assure that fugitive dust at the site is controlled. Personnel involved in CCR handling and placement are instructed to ensure compliance with the permits, facility plans and appropriate regulations. When conditions are not in line with the site standards for fugitive dust emissions, designated facility personnel are notified and corrective action is taken as needed. Observations and corrective actions will be documented in the Operating Record.
4.0 CITIZEN COMPLAINTS LOG

Citizen complaints should be submitted in writing to NPPD at the following address:

Nebraska Public Power District
Attn: Environmental Protection Supervisor
PO Box 499
Columbus, NE 68602-0499

Complaints that are received will be forwarded to the NPPD Corporate Environmental Department for review and coordination of response and corrective measures. The response and corrective measures to each complaint will be determined on a case by case basis.

A copy of each complaint and its resolution, including a summary of corrective action taken, will be provided to SS for inclusion in its operating record. Each complaint and resolution will be included in the annual SS dust control report.
5.0 REPORTING

The recordkeeping, notification, and posting of information to a publicly accessible website required for this Plan is presented in the following sections.

5.1 Fugitive Dust Control Plan

The initial Plan will be placed in the Operating Record on or before October 19, 2015. The NDEQ will be notified before the close of business on the day the Plan is placed in the Operating Record. The initial Plan and amended Plans will be certified by a professional engineer licensed in Nebraska.

The Plan can be amended at any time and the most recent Plan will be maintained in the Operating Record. Notification will be provided before the close of business on the day an amended Plan is placed in the Operating Record. Within 30 days of placing the Plan in the Operating Record, the most recent Plan will be posted to a publicly accessible website.

5.2 Annual Report

The following items will be addressed in the annual CCR fugitive dust control report:

- Descriptions of all actions taken to control CCR fugitive dust.
- A record of citizen complaints.
- A summary of any corrective measures taken to address complaints.

The first report will be submitted within 14 months after placement of the Plan within the Operating Record. Subsequent reports will be completed within one year of the previous report.

The NDEQ will be notified before the close of business on the day the report is placed in the Operating Record. Within 30 days of placing a report in the Operating Record, the report will be posted to a publicly accessible website. Annual reports will be retained and posted to the website for at least five years.
6.0 CERTIFICATION

The statements and conclusions presented in this report are true and accurate to the best of our knowledge. Please direct inquiries to:

Nebraska Public Power District
Sheldon Station
4800 West Pella Road
Hallam, Nebraska

Nebraska Public Power District
1414 15th Street, P.O. Box 499
Columbus, Nebraska 68602-0499
1-877-ASK-NPPD (275-6773)

GOLDER ASSOCIATES INC.

Tammy Rauen, PE
Senior Project Engineer

Ron Jorgenson
Principal and Senior Practice Leader

Jacob Sauer, PE
Senior Project Engineer
7.0 REFERENCES

NDEQ 2015. Nebraska Department of Environmental Quality (NDEQ), Title 129 - Nebraska Air Quality Regulations, Nebraska Administrative Code. Effective July 6, 2015.
FIGURE
Established in 1960, Golder Associates is a global, employee-owned organization that helps clients find sustainable solutions to the challenges of finite resources, energy and water supply and management, waste management, urbanization, and climate change. We provide a wide range of independent consulting, design, and construction services in our specialist areas of earth, environment, and energy. By building strong relationships and meeting the needs of clients, our people have created one of the most trusted professional services organizations in the world.